Molecular structure, vibration properties and quantum chemical calculations of 4-(chloromethyl)-7-methoxycoumarin and 4-(chloromethyl)-7-methyl-coumarin

Main Article Content

Feride Akman
Kamuran Sarac

Abstract

Objective: This study presents the quantum chemical calculations of 4-(Chloromethy)-7-methoxycoumarin (1) and 4-(Chloromethy)-7-methylcoumarin (2).


Material and Methods: The solid phase FT-IR spectra of compounds 1 and 2 have been recorded in the region 4000–500 cm-1. The molecular geometry, vibrational frequency of compounds 1 and 2 in the ground state have been calculated by utilizing the density functional method (DFT/B3LYP) with the 6-311G+ (d, p) basis set. The calculated vibrational frequencies are compared with experimental obtained by FT-IR spectra. On the other hand, frontier molecular orbitals (FMOs) and molecular electrostatic potentials (MEP) of compounds 1 and 2 were calculated at the B3LYP/6-311G+ (d, p) level of theory.


Results: With the aid of the theoretical calculations, the vibrational frequencies are precisely assigned to their molecular structure.


Conclusion: The theoretical and experimental results support each other.

Article Details

How to Cite
Akman, F., & Sarac, K. (2021). Molecular structure, vibration properties and quantum chemical calculations of 4-(chloromethyl)-7-methoxycoumarin and 4-(chloromethyl)-7-methyl-coumarin. Natural Science and Discovery, 2(2), 48–55. https://doi.org/10.20863/nsd.v2i2.44
Section
Research Article

References

Sarıkaya EK, Dereli Ö, Erdoğdu Y, Güllüoğlu MT. Molecular structure and vibrational spectra of 7-Ethoxycoumarin by density functional method. Journal of Molecular Structure. 2013;1049: 220-226.

Koparir M, Orek C, Koparir P, Sarac K. Synthesis, experimental, theoretical characterization and biological activities of 4-ethyl-5-(2-hydroxyphenyl)-2H-1, 2, 4-triazole-3 (4H)-thione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 105: 522-531.

Kumar S, Saini A, Sandhu JS. LiBr-Mediated, solvent free von Pechmann reaction: facile and efficient method for the synthesis of 2H-chromen-2-ones. Arkivoc. 2007;15: 18-23.

Mannekutla JR, Mulimani BG, Inamdar SR. Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008; 69(2): 419-426.

Christie RM, Lui CH. Studies of fluorescent dyes: part 1. An investigation of the electronic spectral properties of substituted coumarins.Dyes and Pigments. 1999; 42(1): 85-93.

Von Pechmann H, Duisberg C. Ueber die verbindungen der phenole mit acetessigäther. Berichte der deutschen chemischen Gesellschaft. 1883; 16(2):2119-2128.

Adams R, Bockstahler TE. Preparation and reactions of o-hydroxycinnamic acids and esters. Journal of the American Chemical Society. 1952; 74(21): 5346-5348.

Johnson JR. The Perkin reaction and related reactions. Organic Reactions.1942.

Shriner RL. The reformatsky reaction, Organic reactions. 1942.

Yavari I, Hekmat-Shoar R, Zonouzi A. A new and efficient route to 4-carboxymethylcoumarins mediated by vinyltriphenylphosphonium salt.Tetrahedron Letters. 1998; 39(16): 2391-2392.

Palafox MA, Rastogi VK, Tanwar RP, Mittal L. Vibrational frequencies and structure of 2-thiouracil by Hartree–Fock, post-Hartree–Fock and density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2003; 59(11): 2473-2486.

Ten GN, Nechaev VV, Pankratov AN, Berezin VI, Baranov VI. Effect of hydrogen bonding on the structure and vibrational spectra of the complementary pairs of nucleic acid bases. II. adenine-thymine. Journal of Structural Chemistry. 2010; 51(5): 854-861.

Szczesniak M, Nowak MJ, Szczepaniak K, Chin S, Scott I, Person WB. Matrix isolation studies of nucleic acid constituents—III. 1-Methyluracil, 3-methyluracil and 1, 3-dimethyluracil monomers. Spectrochimica Acta Part A: Molecular Spectroscopy. 1985; 41(1): 223-235.

Çırak Ç, Koç N. Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent. Journal of molecular modeling. 2012; 18(9): 4453-4464.

Mohan S, Sundaraganesan N, Mink J. FTIR and Raman studies on benzimidazole. Spectrochimica Acta Part A: Molecular Spectroscopy. 1991; 47(8): 1111-1115.

Palafox MA, Tardajos G, Guerrero-Martínez A, Rastogi VK, Mishra D, Ojha SP, Kiefer W. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chemical Physics. 2007; 340(1): 17-31.

Jamróz MH, Dobrowolski JC, Brzozowski R. Vibrational modes of 2, 6-, 2, 7-, and 2, 3-diisopropylnaphthalene. A DFT study. Journal of molecular structure. 2006; 787(1): 172-183.

Singh JS. FTIR and Raman spectra and fundamental frequencies of biomolecule: 5-methyluracil (thymine). Journal of Molecular Structure. 2008; 876(1): 127-133.

Çırak Ç, Sert Y, Ucun F. Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-Bromo-2′-deoxyuridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012; 92: 406-414.

Akman F. Spectroscopic investigation, HOMO–LUMO energies, natural bond orbital (NBO) analysis and thermodynamic properties of two-armed macroinitiator containing coumarin with DFT quantum chemical calculations.Canadian Journal of Physics. 2016; 94(6): 583-593.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et. al. Gaussian, Inc., Wallingford CT, 2010.

Dennington R, Keith T, Millam J. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2010.

Schlegel HB. Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry. 1982; 3(2): 214-218.

Sarıkaya EK, Dereli Ö. Molecular structure and vibrational spectra of 7-Methoxy-4-methylcoumarin by density functional method. Journal of Molecular Structure. 2013 ;1052: 214-220.

Koparir M, Orek C, Alayunt NO, Parlak AE, Koparir P, Sarac K, Cankaya N. Synthesis, Structure Investigation, Spectral Characteristics and Biological Activitie of 4-Benzyl-3-(2-Hydroxyphenyl)-1H-1, 2, 4-Triazole-5 (4H)-Thione. Communications in Computational Chemistry. 2013; 1: 244-268.

Raj RK, Gunasekaran S, Gnanasambandan T, Seshadri S. Combined spectroscopic and DFT studies on 6-bromo-4-chloro-3-formyl coumarin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 139: 505-514.

Sagdinc S, Pir H. Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu (II) and Hg (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009; 73(1): 181-194.

Fleming I. Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.

Muthu S, Prasath M, Balaji RA. Experimental and theoretical investigations of spectroscopic properties of 8-chloro-1-methyl-6-phenyl-4H-[1, 2, 4] triazolo [4, 3-a][1, 4] benzodiazepine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 106: 129-145.

Scrocco E, Tomasi J. The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II (pp. 95-170). Springer Berlin Heidelberg.1973