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Abstract 

In this paper, we define dual Darboux frame of a spacelike ruled surface. Then, we study Mannheim offsets of 

spacelike ruled surfaces in dual Lorentzian space by considering the E. Study Mapping. We represent spacelike 

ruled surfaces by dual Lorentzian unit spherical curves and define Mannheim offsets of the spacelike ruled 

surfaces by means of dual Darboux frame. We obtain relationships between the invariants of Mannheim 

spacelike offset surfaces and offset angle, offset distance. Moreover, we obtain some conditions for Mannheim 

offsets of spacelike ruled surfaces to be developable.  
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1. Introduction 

In differential geometry, a surface is said to 

be “ruled” if through every point of the surface there 

is a straight line that lies on the surface. Then, a ruled 

surface can locally be described as the set of points 

swept by a moving straight line. For example, a cone 

is formed by keeping one point of a line fixed whilst 

moving another point along a circle. Because of they 

are one of the simplest objects in geometric modeling, 

these surfaces are largely used in surface theory and 

also used in many areas of science such as Computer 

Aided Geometric Design (CAGD), mathematical 

physics, moving geometry, kinematics for modeling 

the problems and model-based manufacturing of 

mechanical products. For example, a wood used as a 

building material is straight and can be considered as a 

straight line. So, the engineers can use ruled surfaces 

if they plan to construct a material with curvature [9]. 

An offset surface is a surface obtained by using a 

reference surface’s normal. Offsetting of curves and 

surfaces is one of the most important geometric 

operations in CAD/CAM due to its immediate 

applications in geometric modeling, NC machining, 

and robot navigation [5]. Especially, the offsets of the 

ruled surfaces have an important role in (CAGD) 

[15,16]. The well-known offset of the ruled surfaces is 

Bertrand offsets which were defined by Ravani and 

Ku by considering a generalization of the theory of 

Bertrand curve for trajectory ruled surfaces in line 

geometry [17]. Moreover, there exists a one-to-one 

correspondence between the lines of line space and the 

points of dual unit sphere. This famous 

correspondence is known as E. Study Mapping [2]. 

Hence, the geometry of ruled surfaces can be studied 

by considering dual curves lying on dual unit sphere. 

An example of this notion was given by Küçük and 

Gürsoy for the integral invariants of closed Bertrand 

trajectory ruled surfaces [7]. They have studied 

Bertrand offsets of closed ruled surfaces in dual space 

and introduced some relationships for these surface 

offsets.  

Recently, a new definition of special curve couple was 

given by Wang and Liu [22]. They have called these 

curves as Mannheim partner curves. Then, Orbay and 

et al have given a generalization of the theory of 

Mannheim partner curves to the ruled surface and 

called Mannheim offset [9]. They have obtained the 

conditions for Mannheim offset surfaces to be 

developable. The corresponding characterizations of 

Mannheim offsets of ruled surfaces in Minkowski 3-

space have been given in ref. [10,14]. Furthermore, in 

[11] Önder and Uğurlu have studied Mannheim 

offsets of ruled surfaces in dual space with Blaschke 

approach and obtained the relations between the 

integral invariants of closed ruled surfaces. Moreover, 

they have shown that the striction lines of developable 

Mannheim offset surfaces are Mannheim partner 

curves. They have also studied the Mannheim offsets 

of ruled surfaces in dual Lorentzian space by 

considering the Blaschke frame [12]. Also, they have 

given the dual Darboux frame of the timelike ruled 

surfaces with timelike rulings and studied the 

Mannheim offsets of these surfaces [13]. 

In this paper, we define the dual Darboux frame of a 

spacelike ruled surface and give the real and dual 

curvatures of this surface. Then, we introduce the 

Mannheim offsets of the spacelike ruled surfaces in 



Onder et al                                                                                                      http://dx.doi.org/10.20863/nsd.54091 

30 

 

view of dual Darboux frame. Using the dual 

representations of spacelike ruled surfaces, we give 

some theorems and new results which characterize the 

developable Mannheim spacelike surface offsets and 

we give a new relationship between the developable 

Mannheim offsets and their striction lines 

 

2. Preliminaries 

3-dimensional Minkowski space 
3

1IR  is the real vector space 
3IR  provided with the standard flat 

metric given by  

  
1 1 2 2 3 3,a a a b a b a b    ,  

where 1 2 3( , , )a a a a  and 
3

1 2 3( , , )b b b b IR  . The Lorentzian character of a vector 1 2 3( , , )a a a a  is 

defined as follows: 

i) a  is called timelike if , 0a a  ,  

ii) a  is called spacelike if , 0a a   or 0a  ,  

iii) a  is called lightlike (null) if , 0a a   and  0a  .  

Similarly, the Lorentzian character of a curve ( )s  in 
3

1IR  is given by considering its velocity vectors ( )s . 

Then a curve ( )s  has the same character with its velocity vector  ( )s  [8]. The norm of a vector a  is 

defined by ,a a a . The Lorentzian cross product of two vectors 1 2 3( , , )a a a a  and 

1 2 3( , , )b b b b  is defined by 

1 2 3

1 2 3 2 3 3 2 1 3 3 1 2 1 1 2

1 2 3

( , , )

e e e

a b a a a a b a b a b a b a b a b

b b b

 

       

where 

1 2 3

1        ,       
 ( , , )

0       ,        
ij i i i i

i j
e

i j
   


 


   and    1 2 3 2 3 1 3 1 2, ,e e e e e e e e e        .  

By using this definition it can be easily shown that , det( , , )a b c a b c    [20]. 

The sets of the unit timelike and spacelike vectors are called hyperbolic unit sphere and Lorentzian unit sphere, 

respectively, and denoted by 

 2 3

0 1 2 3 1( , , ) : , 1H a a a a IR a a      

and 

   2 3

1 1 2 3 1( , , ) : , 1S a a a a IR a a     

respectively (See [18]).  

Lorentzian character of a surface is defined using its normal vector. Then a surface in 
3

1IR  is called a timelike 

(spacelike) surface if the normal vector of the surface is a spacelike (timelike) vector [1]. 
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3. Dual Numbers and Dual Lorentzian Vectors 

 Let the set of the pairs ( , )a a  be  ( , ) : ,D IR IR a a a a a IR      . For ( , )a a a , 

( , )b b b D   the following operations are defined on D : 

  Equality  : ,a b a b a b      

  Addition : ( , )a b a b a b      

  Multiplication : ( , )ab ab ab a b    

The element (0,1) D    is called dual unit which has the following properties 

  0  ,   
2 0  ,  1 1    .            (1)  

Let consider the element a D  of the form ( ,0)a a . Then the mapping : , ( ,0)f D IR f a a   is an 

isomorphism. So, we can write ( ,0)a a . Then, by the multiplication rule we have that  a a a    and 

a a a    is called dual number. The set of dual numbers is given by 

   2: , , 0D a a a a a IR       .          (2) 

which forms a commutative group under addition [2,4]. 

A Dual function is a function with a dual variable x . Then the general expression of a dual function is  

  ( ) ( ) ( ) ( )f x f x x f x x f x       ,          (3) 

where ( )f x  is derivative of ( )f x  with respect to x  and ,x x IR  [3]. Using (3), some well-known 

functions can be given as follows 

  

cosh( ) cosh( ) cosh( ) sinh( ),

sinh( ) sinh( ) sinh( ) cosh( ),

, ( 0).
2

x x x x x x

x x x x x x

x
x x x x x

x

 

 

 

 

 





    


   

     


         (4) 

Let  
3D D D D    be the set of all triples of dual numbers, i.e., 

 3

1 2 3( , , ) : , 1,2,3iD a a a a a D i    .          (5) 

Then the set 
3D  is called dual space. The elements of 

3D  are called dual vectors. Analogue to the dual 

numbers, a dual vector a  may be expressed in the form ( , )a a a a a     , where a  and a


 are the 

vectors of 
3IR . Then for any vectors a a a    and b b b    of 

3D , the scalar product and the vector 

product are defined by 

 , , , ,a b a b a b a b     ,           (6) 

and 

 *a b a b a b a b        ,           (7) 
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respectively, where ,a b  and a b  are the inner product and the vector product of the vectors a  and a 
 in 

3IR , respectively. 

The norm of a dual vector a  is given by  

,
, ( 0)

a a
a a a

a




   .           (8) 

If 1 0a   , then a  is called dual unit vector. The set of such vectors is defined by 

 2 3

1 2 3( , , ) : , 1 0S a a a a D a a      ,          (9) 

and called dual unit sphere [2,4].  

The Lorentzian inner product of two dual vectors a a a   , 
* 3b b b D    is defined by  

 *, , , , ,a b a b a b a b     

where ,a b  is the Lorentzian inner product of the vectors a  and b  in 
3

1 .IR  Then the Lorentzian character of 

a dual vector  a a a    is defined as the Lorentzian character of  real part a , i.e., dual vector a  has the 

same character with real vector a  [18]. 

Dual Lorentzian vectors form a space called dual Lorentzian space which is denoted as follows  

 3 3

1 1: ,D a a a a a IR     3

1 . 

Let 
3

1,a b D 3

1
. Then the following product is called dual Lorentzian cross product   

*( ) ,a b a b a b a b         

where a b  denotes the Lorentzian cross product in 
3

1IR  .  

Let a a a   3

1D
3

1 . If 1 0a     (resp. 1 0a   ), then a~  is called dual unit timelike (resp. 

spacelike) vector for which followings hold  

, 1 ( . , 1), , 0.a a resp a a a a              (10) 

Then we called the unit sphere consists of all unit dual timelike vectors as dual hyperbolic unit sphere which is 

represented by 
2

0H , 

 2 3

0 1 2 3 1( , , ) : , 1 0H a a a a D a a       .       (11) 

Similarly, we called the unit sphere consists of all unit dual spacelike vectors as dual Lorentzian unit sphere 

which is represented by 
2

1S , 

 2 3

1 1 2 3 1( , , ) : , 1 0S a a a a D a a      .        (12) 

(See [18]). 

 

Definition 3.1. ([18]) i) Dual Lorentzian timelike angle: The dual angle       between a dual spacelike 

vector x  and a dual timelike vector y  in 
3

1D
3

1  is defined by , sinhx y x y     and called dual 

Lorentzian timelike angle. 
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ii) Dual Central angle: The dual angle       between dual spacelike vectors x  and y  in 
3

1D
3

1  that 

span a dual timelike vector subspace is defined by , coshx y x y     and called dual central angle.  

4. Dual Darboux Frame of a Spacelike Ruled Surface  

 From E. Study mapping, the lines of the line space 
3IR  correspond to dual unit vectors [2,4]. Then, the 

dual spherical curve lying fully on 
2S  represents a ruled surface in 

3IR . In this section, we introduce this 

correspondence rule for spacelike ruled surfaces and give the dual Darboux frame for these surfaces. 

In the Minkowski 3-space 
3

1IR , to determine an oriented spacelike line L  it is enough to know a point p L  

and a unit spacelike vector a . Then, the moment vector a p a    can be defined. The moment vector a 
 

does not depend on the chosen of point p . For another point q  in L  we can write q p a   and then 

a p a q a     . Reciprocally, when such a pair ( , )a a  is given, one recovers the spacelike line L  as 

 3( ) : , ,L a a a a a IR IR       , written in parametric equations. The vectors a  and a


 are 

not independent of one another and they satisfy the following relationships 

  , 1, , 0a a a a  .            (13) 

The components ,i ia a  (1 3)i   of the vectors a  and a 
 are called the normalized Plucker coordinates of 

the spacelike line L . From (10), (11) and (13) we see that the dual spacelike unit vector a a a    

corresponds to spacelike line L . This correspondence is known as E. Study Mapping: There exists a one-to-one 

correspondence between the spacelike vectors of dual Lorentzian unit sphere 
2

1S  and the directed spacelike lines 

of the Minkowski space 
3

1IR  [18]. Using this mapping, the study of spatial motion of a spacelike line 

corresponds to the study of dual Lorentzian spherical curve lying on 
2

1S .  

The relations between a ruled surface and dual spherical curves have been introduced by Veldkamp in detailed 

[21]. Now, we use the similar procedure to introduce the dual Darboux frame of a spacelike ruled surface.  

Let ( )k  be a dual Lorentzian curve on 
2

1S  and let the dual position vector of ( )k  be unit spacelike vector 

( ) ( ) ( )e u e u e u   . The real part e  draws a curve on 
2

1S  and is called the (real) indicatrix of ( )k  which 

will be accepted as not a single line in this study. Let consider the parameter u  as the arc-length parameter s  of 

the real indicatrix and denote the differentiation with respect to s  by primes. Then we have , 1e e    . The 

vector e t   is the unit tangent vector of the indicatrix and it is also the unit normal of the surface. The 

equation ( ) ( ) ( )e s p s e s    has infinity of solutions for the function ( )p s . If ( )op s  is a solution, then the 

set of all solutions is given by ( ) ( ) ( ) ( )op s p s s e s  , where   is a real scalar function of s . Therefore 

we have , ,op e p e      . By taking ,o op e       we have that ( ) ( ) ( ) ( )o op s s e s c s   

is the unique solution for ( )p s  with , 0c e   . Then, the given dual curve ( )k  corresponding to the 

spacelike ruled surface  

  ( ) ( )e c s ve s   ,           (14) 

may be represented by  

  ( )e s e c e   ,           (15) 

where 

  , 1e e  ,  , 1e e    ,  , 0c e   ,          

and c  is position vector of the striction curve. Then we have  
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  1 det( , , ) 1e c e t       ,         (16) 

where det( , , )c e t   which characterizes the developable spacelike surface, i.e, the spacelike surface is 

developable if and only if 0  . Then, the dual arc-length s  of the dual curve ( )k  is given by 

  

0 0 0

( ) (1 )

s s s

s e u du du s du          .        (17) 

From (17) we have 1s     . Therefore, the dual unit tangent to the dual curve ( )e s  is given by 

  ( )
1

de e e
t t c t

ds s




 
     

  
.         (18) 

Introducing the dual unit vector g e t g c g       we have the dual frame  , ,e t g  which is known 

as dual geodesic trihedron or dual Darboux frame of e (or ( )e ). The real parts  , ,e t g  of dual Darboux 

frame vectors form an orthonormal frame which is called geodesic trihedron of the indicatrix ( )e s with the 

derivations  

  , ,e t t e g g t       ,          (19) 

where   is called the conical curvature [6,19].  

 Let now obtain the dual Darboux formulae of a spacelike ruled surface.  

 From (18) we have , 1 0t t    . Since g e t   ,  we obtain  

  , 0,
dt dg dt

t e
ds ds ds

    .          (20) 

For the derivative of  t  let write 

  
dt

e t g
ds

     ,           (21) 

where , ,    are the dual functions of dual arc-length s . Then from (20) it follows  

  
dg

t
ds

 .            (22) 

Since t g e  , (22) gives that  

  
dt

e g
ds

  .            (23) 

Then from (18), (22) and (23) we have the following theorem.  

 

Theorem 4.1. The dual Darboux formulae of a spacelike ruled surface are given by  

  , ,
de dt dg

t e g t
ds ds ds

     .         (24) 

From (24), the dual Darboux vector of the trihedron is obtained as  d e g   . 

  

 Let now give the invariants of the surface. Since 1s     , (22) gives that  
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  (1 )g t     .           (25) 

From (18) and equality g g c g   , we obtain 

  

( )

( ) ( )

( ).

g t c g c t

t c t c g

t c g

  

  

 

    

    

  

          (26) 

Then (25) and (26) gives us 

  (1 ) ( )t t c g         ,          (27) 

and from (27) we have 

  (1 )       ,           (28) 

where ,c e   and from (28) it follows that 

  ( )        .           (29) 

Moreover, since c  as well as e  is perpendicular to t , for the real scalar   we may write c e t  . Then  

  det( , , ) , ,c e t c e t t t          . 

Hence ( )e c e e t g        and c e g    .  

The functions ( ), ( )s s  and ( )s are the invariants of spacelike ruled surface e . They determine the 

surface uniquely up to its position in the space.  

 

4.1. Elements of Curvature of a Dual Lorentzian Curve 

The dual radius of curvature of spacelike ruled surface ( )e s  is can be calculated analogous to common 

Lorentzian curve theory as follows 

  

3

2 2

2

1

1

de

ds
R

de d e

ds ds


 




.          (30) 

The unit Darboux vector 
od  is given by 

  
2 2

1

1 1
od e g



 
  

 
.          (31) 

It is clear that 
od  is spacelike. Then, the dual angle between 

od  and e  satisfies the followings 

  
2 2

1
sin , cos

1 1
R


 

 


  

 
,         

where   is the dual spherical radius of curvature.   

     

Furthermore, the corresponding equalities for a dual hyperbolic curve 1 1( )e s (timelike ruled surface 
1e

 ) are 

given as follows: 
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1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0

1 1 1 1 1 1 1 1 1 1 1

( ) (1 ) , det( , , ),

, ,  , , ( )

s s s

s e u du du s du c e t

c e g t

 

      


         


        


  
    (32)   

    

  

1
1 1 1

2 2

1 1

1
1 1 1

2 2

1 1

1
cosh , sinh , 1.

1 1

1
sinh , cosh , 1.

1 1

if

if


  

 


  

 


    

 

     
  


      (33) 

and   

  
1 1

1

1 1

sinh , 1,

cosh , 1.

if
R

if

 

 

 
 

 
   and  

coth , 1,

tanh , 1.

if

if

 


 

 
 


      (34) 

(See [13]). 

 

5. Darboux Approach to Mannheim Offsets of Spacelike Ruled Surfaces 

Let e  be a spacelike ruled surface generated by dual spacelike unit vector e  and 
1e

  be a ruled 

surface generated by dual unit vector 1e  and let the dual Darboux frames of these surfaces be 

 ( ), ( ), ( )e s t s g s  and  1 1 1 1 1 1( ), ( ), ( )e s t s g s , respectively. Then e  and 
1e

  are called Mannheim 

surface offsets, if  

  1 1( ) ( )g s t s             (35) 

holds, where s  and 1s  are the dual arc-lengths of e  and 
1e

 , respectively. This definition gives that 
1e

 is a 

timelike ruled surface, but the generator of this surface can be timelike or spacelike. In this study, we consider 

the surface 
1e

 as a timelike ruled surface with timelike ruling. If the ruling is chosen as spacelike, using 

Definition 3.1 (ii), similar results can be found. So, in this study we mean that e  and 
1e

  are spacelike and 

timelike ruled surfaces, respectively, and for short we don’t write the Lorentzian characters of the surfaces 

hereinafter.  

 

Let now the ruled surfaces e  and 
1e

  form a Mannheim offset. Then by considering (35), the relationship 

between the trihedrons of e  and 
1e

  can be given as follows 

  

1

1

1

sinh cosh 0

0 0 1

cosh sinh 0

e e

t t

g g

 

 

    
    

     
    
    

,         (36) 

where      , ( , )IR    is the dual Lorentzian angle between the dual generators e  and 1e  of e  

and 
1e

 . The real angle   is called the offset angle which is the angle between the rulings e  and 1e , and  
 is 

called the offset distance which is measured from the striction point c  of e  to striction point 1c  of 
1e

 . And 
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from (36) we may write 1c c t   . Then,       is called dual Lorentzian offset angle of the 

Mannheim ruled surfaces e  and 
1e

 . If 0  , then the Mannheim surface offsets are said to be right offsets.  

Now, we give some theorems and results characterizing Mannheim offsets.  

 

Theorem 5.1. Let e  and 
1e

  form a Mannheim offset. The offset angle   and the offset distance  
 are 

given by 

  

0

,

s

s c du c          ,          (37) 

respectively, where c  and c  are real constants.  

Proof. Since e  and 
1e

 form a Mannheim offset, we can write  

  1 sinh coshe e t   .          (38) 

By differentiating (38) with respect to s  we have 

  1 cosh 1 sinh 1 cosh
de d d

e t g
ds ds ds

 
   
   

       
   

.      (39) 

From (35) we have that 
1de

ds
 and g  are linearly dependent. Then, from (39) we get 1

d

ds


   and for the dual 

constant c c c    we write 

  

.

d ds

s c

s s c c





     

 

  

     

 

Then from (17) we have  

  

0

,

s

s c du c          , 

where c  and c


 are real constants.  

 

 From (37), the following corollary can be given. 

 

Corollary 5.1. Let e  and  
1e

  form a Mannheim offset. Then e is developable if and only if offset distance is 

constant, i.e. constantc    . 

 

Theorem 5.2. Let e  and 
1e

  form a Mannheim offset. Then the relationship between the dual arc-length 

parameters of e  and  
1e

 is 

  1 cosh
ds

ds
  .           (40) 

Proof. Since e  and 
1e

 form a Mannheim offset, Theorem 5.1 gives that   
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  1
1

1 1

cosh
de ds

t g
ds ds

   .          (41) 

Then using equality 1t g , from (41) it follows   

  

1

cosh 1
ds

ds
              (42) 

and from (42) we get (40). 

 

Corollary 5.2. Let e  and 
1e

  form a Mannheim offset. Then the relationships between the real arc-length 

parameters of e  and 
1e

 are given as follows 

  
1 1 1

2
cosh , sinh ( )cosh

ds dsds ds ds

ds ds
       

 


     .     (43) 

Proof. Since e  and 
1e

 form a Mannheim offset, (40) holds. By considering (4), the real and dual parts of (40) 

are 

  
1 1 1

2
cosh , sinh ( )cosh

ds dsds ds ds

ds ds
       

 


     ,     (44) 

which are desired equalities.  

 

In Corollary 5.1, we give the relationship between the offset distance  
 and developable spacelike ruled 

surface e . Now we give the condition for 
1e

  to be developable according to  
. From (17) and (32) we have  

  1 1 1,ds ds ds ds     ,          (45) 

respectively. Then writing (45) in (44) and using (43) we get  

   1 tanh


 


    , 

and give the following corollaries: 

 

Corollary 5.3. Let e  and 
1e

  form a Mannheim offset. Then  

  1 tanh


 


    ,            (46) 

holds. 

 

Corollary 5.4. Let e  and 
1e

  form a Mannheim offset. Then 
1e

  is developable if and only if  

coth


 


   holds. 

 

Theorem 5.3. Let e  and 
1e

  form a Mannheim offset. There exists the following relationship between the 

invariants of the surfaces and offset angle  , offset distance  
, 
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  1 tanh


  


  .                      (47) 

Proof. Let the striction lines of e  and 
1e

  be ( )c s  and 1 1( )c s , respectively, and let e  and  
1e

  form a 

Mannheim offset. Then, from the Mannheim condition we can write  

  1c c g   .            (48) 

Differentiating (48) with respect to 1s  we have  

  1

1 1

dc dc d ds
t g

ds ds ds ds


 


 

   
 

.         (49) 

From (32) we know that 
1 1 1 1/ ,dc ds e  . Then from (36) and (49) we obtain  

 1

1

sinh / , cosh / , cosh ,
ds

dc ds e dc ds t t t
ds

       .      (50) 

Since / ,dc ds e  , / , 0dc ds t  , , 1t t   , from (50) we write 

   1

1

sinh cosh
ds

ds
       .           (51) 

Furthermore, from (43) we have  

  

1

1

cosh

ds

ds  
 .           (52)  

Then substituting (52) in (51) we obtain  

  1 tanh


  


  . 

           

Theorem 5.4. If e  and 
1e

  form a Mannheim offset, then for conical curvature 1  of  
1e

  and offset angle    

  1 tanh   ,             (53) 

holds. 

Proof. From (32) and (36) we have 

  

1 1 1

1

1

,

(cosh sinh ),

sinh .

g t

d
e t g

ds

ds

ds



 

 

 

  

 

         (54) 

From the first equality of (43) and (54), we have 1 tanh   .  
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Theorem 5.5. If the surfaces e  and 
1e

  form a Mannheim offset, then the dual conical curvature 1  of 
1e

  is 

obtained as  

  1 tanh   .                (55) 

Proof. From (32), (47), (53) and (54) by direct calculation we have (55). 

 

 From (55) we have the following corollary. 

 

Theorem 5.6. If the surfaces e  and 
1e

  form a Mannheim offset, then the dual curvature of 
1e

  is given by  

  1 coshR  .            (56) 

Proof. From (62) we have 

  
2

11 sech tanh sech sech         . 

Then from (34) we have  

  

1 2
2

1

1 sech tanh sech

sech1

cosh sinh

cosh .

R
   



  








 



 



 

Then we can give the following corollaries. 

 

Corollary 5.5. If e  and 
1e

  form a Mannheim offset and 
1 1  , then the dual spherical radius of curvature 

of 
1e

  is given by  

  1cosh cosh   .           (57) 

 

If we assume that 1 1  , then we have equalities for a timelike ruled surface whose Darboux vector is timelike 

and the obtained equalities will be analogue to given ones. 

 

 

6. Conclusions 

 

The dual Darboux frame of a spacelike ruled surface is introduced. Then the characterizations of 

Mannheim offsets of spacelike ruled surfaces are given in view of dual Darboux frame and new relations 

between the invariants of Mannheim offsets are obtained. The results of the paper are new characterizations of 

Mannheim offsets of a spacelike ruled surface and also give the relationships for these offsets to be developable 

according to offset angle and offset distance. Moreover, the relationship between the developable Mannheim 

offsets and their striction lines is given.   
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