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Abstract

Objective: Multivariate GARCH (MGARCH) models are forecasted under normality. In this study, for non-
elliptically distributed the data set which are generated Weilbull distribution. Copula-based GARCH (Copula-
GARCH) was used. The aim of the paper is to model GARCH for non-normal distributions using copulas.

Material and Methods: A two-step Copula-GARCH model to analyze the dependence structure of data sets
was used. In the first step, we show data using univariate GARCH model to get standard residuals and construct
marginal distributions. In this section GARCH (p,q) and GARCH (1,1) method are introduced. GARCH (1,1)
method for data set was used for first step. In the second step, for dependence structures of the data sets were
calculated Kendall Tau and Spearman Rho values which are nonparametric. Based on this method, parameters
of copula are obtained.

Results: A clear advantage of the copula-based model is that it allows for maximum-likelihood estimation
using all available data.

Conclusion: The aim of the method is basic to find the parameters that make the likelihood functions get its
maximum value. With the help of the maximum-likelihood estimation method, for copula families obtain
likelihood values. This values, Akaike information criteria (AIC) and Schwartz information criteria (SIC) are
used to determine which copula supplies to suitability to the data set.

Key Words: Copula Function, GARCH method, Kendall Tau, Spearman Rho, Akaike information criteria,
Schwartz information criteria.

1. Introduction

In the past years, the standard method of estimating
dependence has been Pearson’s correlation coefficient,
which is based on the multivariate Gaussian
distribution. However, as Fama (1963) noted,
financial time series do not provide the assumption of
normality. Embrechts, McNeil, and Straumann (1999)
proved that Pearson’s correlation coefficient is not
sufficient to show the dependence between variables
not belonging to the family of elliptical distributions.
That is to say there was a need for the establishment
of new methods to overcome the drawbacks of
Person’s correlation coefficient. Multivariate GARCH
models formed such a status. The aim of this model is
modeling of the conditional covariance and
conditional correlation matrix.

Today, a commonly used second alternative can be
found in the so called copulas introduced by Sklar
(1959). The aim of this paper is to model GARCH for
non-normal multivariate distributions using copulas.
Copulas are defined functions that join one
dimensional distribution functions together to form
multivariate distribution functions by Sklar (1959).

There were very few practical applications of copulas.
Nelsen (1999) gave definition of copula with
mathematic perspective. Later applications of copulas
were defined in finance Embrechts, P., A. McNeil and
D. Straumann (2002).
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2. Material and Methods

2.1. GARCH Model

GARCH model was first founded by generalizing ARCH model by Bollerslev and Eagle (1986).The GARCH
(p,q) includes p lags of the variances in the linear ARCH (q) conditional variance equation. The variance
equation can be generalized

q )4
o’ =W+Za/_5i/_ +Z,Biaf_,. 1)
Jj=1 i=1

Another extension is the Generalized ARCH or GARCH model. The GARCH model adds lags of the variance,
ht-p, to the standard ARCH. A GARCH (1, 1) method refers to the presence of a first-order autoregressive
ARCH statement and a first-order moving average GARCH statement. For GARCH (p,q)

v &

. is the error terms from the mean the equation. &, = 0,Z,, here, Z is separate stochastic piece and
also Z, is residual series, Z, have zero mean identical and independent distribution, &, is a time dependent

standard deviation.

P 9q
v B20,a,20and Y S+ a,<1.
i=1

J=1

P q
4 z ﬂiaii is show GARCH statements, Z aj(fij is show ARCH statements.
i=1 j=1
v The parameter of ARCH statements and GARCH statements submit the influence of ARCH effect (past
innovation) and GARCH effect on the conditional variance. The rate of this effect to the coming periods
respectively.
In general GARCH (1,1) is enough to use for this series [3,7,18].
2.2. Copula Theory

The copula is defined as a C :[0,1]> —[0,1] that ensures the limiting conditions
v C(u,O) = C(O,u) =0 andC(u,l) = C(l,u) =u,Vu e [0,1] .
v (u,u,,v,v,) €[0,1]*, such that u, <u,,v, <v,

C(uz,vz)—C(uz,vl)—C(ul,v2)+C(ul,vl)20.

Ultimately, for twice differentiable and 2-increasing property can be replaced by the condition
0*C(u,v)
ouov

where ¢(u, V) is the copula density. In the following, for n-uniform random U|,U,,...,U, variables, the joint

c(u,v)= >0 ()

distribution function C is defined
C(u,uy,....u,,0)=P(U, <u,U, <u,,..U, <u,).

Here 6 is dependence parameter [1,2,3,4,5,8,9,10,11].
2.2.1. SKklar Theorem

Let X and Y be random variables with continuous distribution functions /', and F, , with F) (X ) and

F, (Y ) are uniformly distributed on the interval [0,1]. Then, there is a copula such that forall x,y € R,

Fo (X,Y)=C(F,(X),F,(Y) . 3)

The copula C for (X, Y) is the joint distribution function for the pair F, (X) , F, (Y)provided F, and F,
continuous [1,2,3,4,6,9,11,12,13,14,15,16,17,20,21,22,23].
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2.2.2. Archimedean Copula

Let ¢ define a function ¢ : [0,1] — [0, o] which is continuous and provides:
v ¢(1)=0, ¢(0) =co.
v Forall £ €(0,1), ¢ (£)<0 ,¢ is decreasing, for all £ € (0,1) (/)"(t) 20 ,¢ isconvex.

¢ has an inverse @ [0,00] - [0, 1] , which has the same properties out of ¢ (0) =1 and ¢ (c0) = 0.
The Archimedean Copula is defined by

C(u,v) = ¢ " [du) + p(v)]. )
[10,12,16,19].

2.2.3. Gumbel Copula

This Archimedean copula is defines with the help of generator function ¢(Z‘ ) =(—lnl‘ )H ,02>1;
C,(u,v) = exp(—(~Inu)” + (~Inv)’1*) (5)

where O is the copula parameter restricted to[1, o). This copula is asymmetric, with more weight in the right
tail. Beside this, it is extreme value copula [12].
2.24. Clayton Copula

-6

This Archimedean copula is defines with the help of generator function @(¢) = —,

0
C,(u,v)=w " +v"’-10. (6)
where @ is the copula parameter restricted to (0,00). This copula is also asymmetric, but with more weight in
the left tail [13].

2.2.5. Frank Copula

-0
- " -1

This Archimedean copula is defines with the help of generator function; ¢ (t ) =—In— 7
e e

3

—ou —ov _
C, (u,v)=—éln 1+(e l)(e 1) @)

('

where @ is the copula parameter restricted to (0, OO) [13].
2.2.6. Joe Copula

This Archimedean copula is defines with the help of generator function; @ (t ) =—In [1 - (1 -1 )a}

0 0 0 0V
Cy (uv) =1 (1=u) +(1=v)' = ((1=u)’ (1-v)’ | ®)
where 6 is the copula parameter restricted to [1, OO] . This copula family is similar to the Gumbel. The right tail

positive dependence is stronger more than Gumbel [20].

15
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2.2.7. Plackett Copula

This copula function is defines

1+ (O —=1)=[1+ (0 =) +v)F —46(6 — v

C(u,v) 9)
2(60-1)
Where 6 is the copula parameter restricted to (0,00) [20].
2.2.8 Ali Mikhail Haq Copula
This Archimedean copula is defines with the help of generator function ¢ (t) =In [1 -6 (1 —t ):I /'t
uyv
C,(u,v)= (10)

l—e(l—u)(l—v)

where @ is the copula parameter restricted to [— 1, 1] [18].

2.3. Measuring Dependence

2.3.1. Spearman Rho
Similar to approach of Pearson correlation coefficient, to compute the correlation between the pairs (R, S,) of

ranks have been used. Thus, Spearman’s Rho

n

2 (R, =R)(S,=S)
p, = = e[-1,1] (11)
\/Z (R, =R)"2(S,~58)
i=1 i=1
where
= 1 n+l 1
R==) R = =—> 5, (12)
n ; 2 n ,Z:;
write. This coefficient that stated expediently in the form
12 - +1
p,=———— SRS, -3 (13)
n(n+1)(n-1)3 n-1
Also, p, is asymptotically unbiased estimator of
p=12 j uvdC(u,v)—3=12 j C(u,v)dudv -3 (14)
(.17 (.17
where the second equality is obtain. This statement extended;
12& RS, n—1
12 j uvdC (u,v)—3=—= i S 3= p (15)
non+ln+l n+1

(017
and C, — C as n—>o00 Here the null hypothesis H,=C =II of independence of X andY, the

distribution of p, is normal with zero mean and variance 1/(n—1) thus for H o approximate a =0.05,

Nn-1|p,|>z,, =1,96[12,13,14,15].
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2.3.2. Kendall Tau
Another measure of dependence is Kendall Tau. This measure based on ranks given by

_h-9, __ 4

n - })n -1
n) a(n—1)
8

where P, and O number of concordant and discordant pairs respectively. Here, (X,,Y,),(X ;»Y;) pairs are

concordant (X, —X;)(¥;,—Y;)>0and these are disconcordant(X,—X )(¥,-Y;)<0. If

T

(16)

(X, = X,)(¥,=Y,)>0; we can say (R, —R;)(S;—S5,)>0.7, is function of copula C,. As n— o,

1 1.
Cn—>C,W=;;IU=;#{]:X,SXNY_I.SY[},

n+3

T, =4 -
n—1 n—

=4j C(u,v)dC(u,v)—1 (17)
(0,17

written. 7, is asymptotically unbiased estimator of 7 and 7, is normal with zero mean and variance

2(2n+5)/{9n(n—1)} . Here the null hypothesis H, = C =TI of independence of X andY, thus for H
approximate ¢ = 0.05, \/9n(n -1)/2(2n+5)

7,|>1.96 [12,13, 14, 15, 22].

Table 1: Generator, Parameter space, Kendall Tau and Spearman Rho values of Special Copula Families

Family Generator Parameter Kendall Tau Spearman Rho
Gumbel ¢(t)=(—lnt)0 96[1,00) %
Clayton 01 [0, 0
1) = 0 [ ) 0+2
Frank o _ 4 12
#)=n = Oe(=2%) 1-2[1-D,(6)] 1-=[D.(-60)-D,(-0)]
e p—

Joe (p(t)=—1n|:1—(1_t)q 96[1,00) 1+%D,;(9) -

Placket - 0 € (0,0) - 0+1 B 20ln 0
-1 (0-1)

2.4. Copula estimation
2.4.1. Maximum Likelihood Method (MLE)

Maximum likelihood method is the most used for copula. The aim of the method is basic to find the parameters
that make the likelihood functions get its maximum value. It is given

S (6555005 %,) = (B (%), By (3,), 000, B (5, ))Hf,-(xj) (18)

0" c(Fy (3, Fy(x,)s-w F(x,))

c(F(x,),F,)(x,),.... F. (x,)) = OF (x ). Fy(x)n F(x)

Let {x1t9x2[9"'9xnt}T

. is the sample data matrix, the likelihood functions can be given

T T n
10) =D In(c(F (x,), Fy (xy,), .0 By (x, )+ D D Inf(x,). (19)
t=1 t=1 j=1
17
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Accordingly, the maximum likelihood estimator is

A

0, = m;axl(@) . [12, 13, 14, 15]

2.4.2. Inference for marginal (IFM)
This method is used to overcome the drawbacks of full maximum likelihood function. The aim of copula theory
is separate between the univariate margins and the dependence structure. From equation (19)

T T n
1(6) =Y In(c(F (x,,,6,), Fy(xy,,0,),... F, (x,,,6,),0)+ Y, D In f(x,.0)) (20)
t=1

= t=1 j=1
write. In this equation (19) the vector of the parameters for the univariate marginal 6@ =(6,,0,,...,6,) and

o is vector the parameters of copula. Accordingly, the fundamental idea of inference for margins is that it is
forecasts the parameters for marginal distributions and copula separately in two stages.

v’ Estimate the parameters Qj from marginal distributions,

A

T
0, =argmax21nfi(xjt;6fi) (21)

o, t=1

v' Estimation of the vector of the copula parameters  , used the & = (491 , 92 yere 9’1) ;

T
aAIFM = arg malen(c(E (xltaal)an (xztsgz ),...,Fn (x

@ t=1

w00,):a) (22)
[12, 13, 14, 15].

2.5. Tail Dependence of Copulas

In order to estimate the copula from bivariate observational data sets, we use the tail dependence concept. It

relates the amount of dependence in the upper-right quadrant tail or in the lower-left-quadrant tail of a bivariate

distribution. The upper and lower tail dependence parameters; If a bivariate copula C is such that; it is that upper

tail dependence written,

1-2v+C(v,v)

=lim——= (23)
/’LU v—>1 (1 — V)
Similarly, lower tail dependence is written;
. C(v,v
A, = hmM ) (24)
v—>0 v
Table 2: For copula familes upper and lower tail dependence

Copula A

Family & 5

Gumbel 1 _ V¢

Joe 2_ 21/ 0

Copula

limv/1-0(1-v)* =0,5 for =1
AMH 0 i

Copula limv/1-0(1-v)> =0,5 for 6<0
v—=0

Clayton 0 Ve

Copula

Frank 0 0

Copula

Plackett 0 0

Copula

[4,18].
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2.6. Copula-GARCH Estimation

There are some approaches to model dependence. Many researchers prefer multivariate normal and t distribution
to model in applications and GARCH model is widely used in this application. So, we prefer copula instead of
multivariate GARCH to model dependence. The most important feature of copula is not requiring any
assumptions of the margins normal distribution. Beside this, copula permit to separate a high dimensional joint
distribution into its marginal distributions and copula function use to link them together. For GARCH model,
there are many parameters which estimation more difficult. Compare to multivariate GARCH models and other
multivariate models, copula is more suitable to model dependence structure. For the series, to model dependence
structure, other selection criteria are Akaike’s information criterion (AIC) and Schwarz’s criterion (SIC).These;

AIC =-2logL+2k/n (25)
SIC=-2logL+kIn(n)/n. (26)
Here, k is the number of estimated parameter for each model, n size of sample [3,19].
3. Application
3.1. Data Description

In this study, I used data set (X, Y, Z, T) which generated from Weilbull distribution. I define the log-returns of
series. Table 3 and Table 4 contain respectively descriptive statistics of X, Y, Z, T series and X, Y, Z, T return
series. As submitted in these results, the means of X, Y, Z, T series are not nearby to zero and standard
deviations are a little bit. The Skewness means that X, Y, Z, T series are positive. The Kurtosis of X, Y, Z, T
series are positive. The meaning of positive skewness is that X, Y, Z, T series have the longer right tail of
density.

Table 3: Descriptive statistics of X,Y,Z,T series

X Y Z T
mean 1,041126 0,939809 0,991116 1,059747
median 0,747425 0,615185 0,670895 0,777685
maximum 6,726771 7,982274 8,028318 5,703414
minumum 0,000522 0,000671 0,005108 0,006594
Std.dev. 1,064711 0,963039 1,026534 0,967569
Skewness 2,205341 2,153105 2,438068 1,563574
Kurtosis 9,755806 11,01666 12,41151 5,763879
Jarque-Bera 1084,917 1380,170 1872,554 290,3015

120

Frequency
Frequency

100

Frequency
Frequency

70 1 2 3 4 5 6 7 8 9
4 T
Figure 1: Frequency of X, Y, Z and T series
19
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Table 4: Descriptive statistics of X,Y,Z,T return series

X Y V4 T
mean -0,007332 -0,000379 0,002451 0,001740
median 0,008150 -0,035048 -0,008549 -0,096574
maximum 5,858241 7,341030 5,238800 5,813359
minumum -6,040652 -6,934251 -5,860342 -5,833584
Std.dev. 1,765448 1,880493 1,707246 1,592205
Skewness 0,004231 0,155597 0,139830 0,187150
Kurtosis 3,739595 3,666246 3,727014 3,606463
Jarque-Bera 9,095071 8,989556 10,08736 8,443801
6
4
2
g o g
-4
6|
8 T T AR A SN AR LR AR T T SR DA SR DA
6 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
4
2
N N [
4
-6 T AR R R R R LR R R AR R R R N LR U
50 100 150 200 250 300 350 40C 50 100 150 200 250 300 350 400

Figure 2: Returns of X, Y, Z and T series

3.2. Modeling the marginal distribution

In table 3,4,5,6, for X, Y, Z and T return series are given marginal modeling. In these tables, there are
coefficients for variance equation. In the equation (1) wis C, & is ARCH (1) and [ is GARCH (1). Accordingly

this equation, the sum of the ARCH and GARCH coefficients ( & + f# <1 ) is very close to one, indicating that
volatility shocks for this series are quite persistent. This result is often observed in high frequency data.

Table 5: X return Series Marginal Modeling

Natural Science and Discovery 2017; 3(2):13-24

Gaussian Standard Error
C 2,403845 0,382825
ARCH (1) 0,397481 0,099624
GARCH(1) -0,137874 0,099005
LogL -775,4711 -
AIC 3,907123 -
SIC 3,947113 -
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Table 6: Y return Series Marginal Modeling

Gaussian Standard Error
C 2,414059 0,519193
ARCH (1) -0,335428 0,104123
GARCH(1) -0,017985 0,120611
LogL -801,0585 -
AIC 4,035381 -
SIC 4,075370 -
Table 7: Z return Series Marginal Modeling
Gaussian Standard Error
C 2,200512 0,349086
ARCH(1) 0,393349 0,104596
GARCH(1) -0,155193 0,110172
LogL -754,4844 -
AIC 3,801927 -
SIC 3,841916 -
Table 8: T return Series Marginal Modeling
Gaussian Standard Error
C 1,330661 0,372758
ARCH(1) 0,339488 0,100450
GARCH(1) 0,125565 0,180168
LogL -724,8858 -
AIC 3,678625 -
SIC 3,718615 -

3.3. With Copula Modeling of the Dependence Structure

In this study, to model dependence, I present five copula families. I used to select Kendall’s Tau and Spearman’s
Rho rank correlation statistics in our study, so the correlations parameters corresponding to each copula are
obtained based on Kendall’s Tau and Spearman’s Rho. Maximum Likelihood Estimation method is used applied
to estimation copula parameters. Accordingly, in table 11, 12, 13, 14, 15, 16 for copula families parameter values
and Logl, AIC and SIC values is calculated. According to this values, with the help of equation, (19), (25) and
(26), in table 11, relationship of X and Y series is positive weak relation and based on the AIC and SIC value we
conclude that dependence structure of X and Y series is modeled by Ali Mikhail Haq copula

(60=0,14722356), in table 12 relationship of Z and T series is positive weak relation and based on the AIC
and SIC value we conclude that dependence structure of Z and T series is modeled by Clayton copula
(8 =0,0682523), in table 13, relationship of X and Z series is negative weak relation based on the AIC and
SIC value we conclude that dependence structure of X and Z series is modeled by Frank (& =—0,108012),

similarly in table 14, in table 15 and in table 16 respectively, relationship of X and T series is negative weak
relation and based on the AIC and SIC value we conclude that dependence structure of X and T series is

modeled by Frank (8 = —0,351430), relationship of Y and Z series is positive weak relation and based on the
AIC and SIC value we conclude that dependence structure of Y and Z series is modeled by Ali Mikhail Haq
(6 =0,053274), relationship of Y and T series is negative weak relation and based on the AIC and SIC value

we conclude that dependence structure of Y and T series is modeled by Frank (@ = —0,072003).

Table 9: For X, Y, Z, T series Kendall Tau ( 7 ) rank correlation

X Y Z T
X 1 0,034 20,012 20,039
Y 0,034 1 0,012 -0,008
zZ 0,012 0,012 1 0,033
T -0,039 -0,008 0,033 1

21
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Table 10: For X, Y, Z, T series Spearman Rho ( p ) rank correlation

X Y z T
X 1 0,05 -0,019 -0,059
Y 0,05 1 0,015 -0,013
z -0,019 0,015 1 0,049
T -0,059 0,013 0,049 1
Table 11: X and Y series Dependence Structure Modeling
Copula Family 0 o) Logl AIC SIC
Joe Copula 1,061005 0,002373 95,8729 191,7558 191,7588
AMH Copula  0,1472356 0,0025 0,208139 -0,4066278  -0,386320
Clayton
Copula 0,070393 ~ 0,002246 -0,24994 0,50988 0,51289
Frank Copula  0,306286  0,002714 59,874 119,758 119,761
Plackett
Copula 1,161695  0,002504 -632,822 1265,654 1265,657
Table 12: Z and T series Dependence Structure Modeling
Copula Family 0 o Logl AIC SIC
Joe Copula 1,059141 0,002368 -102,134 204,278 204,281
AMH Copula  0,1430673 0,002501 0,226331 -0,44266 -0,43965
Clayton
Copula 0,0682523 0,002252 0,625233 -1,24047 -1,23746
Frank Copula  0,2972623  0,002545 -57,9673 115,9446 115,9476
Plackett
Copula 1,158477  0,004427 639,803 1279,616 1279,619
Table 13: X and Z series Dependence Structure Modeling
Copula Family 0 o Logl AIC SIC
Joe Copula 0,979581 0,002351 49,1176 98,2452 98,24821
AMH Copula  -0,054732 0,002532 0,030216 -0,05043 -0,04742
Clayton
Copula -0,023715 0,002224 0,112861 -0,21572 -0,21271
Frank Copula ~ -0,108012  0,000331 17,68412 35,3582 35,3552
Plackett
Copula 0,9445883 0,0025 -1005,09 2010,19 2010,193
Table 14: X and T series Dependence Structure Modeling
Copula Family 0 o Logl AIC SIC
Joe Copula 0,9356073  0,002369 -25,5028 51,0156 51,01861
AMH Copula  -0,183338 0,002632 0,292312 -0,57462 -0,57161
Clayton
Copula -0,075072  0,002382 0,509709 -1,00942 -1,00641
Frank Copula  -0,351430  0,003511 48,15021 96,2904 96,2874
Plackett
Copula 0,837624  0,002504 -631,274 1262,558 1262,561

Natural Science and Discovery 2017; 3(2):13-24
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Table 15: Y and Z series Dependence Structure Modeling

Copula Family 0 o Logl AIC SIC
Joe Copula 1,020986  0,002353 73,1704 146,3508 146,3538
AMH Copula  0,053274 0,002503 0,015528 -0,02106 -0,01805
Clayton
Copula 0,024291 0,002295 -0,11522 0,24044 0,24345
Frank Copula  0,018012 0,000391 -19,7092 39,4284 0,24345
Plackett
Copula 1,046031 0,00251 -1069,54 2139,09 2139,093

Table 16: Y and T series Dependence Structure Modeling

Copula Family 0 o Logl AIC SIC
Joe Copula  0,098325 0,002347 53,7173 107,4446 107,4476
AMH Copula  -0,036351 0,002523 0,015474 -0,02095 -0,01794
Clayton
Copula 0,015873  0,001967 -0,01493 0,03986 0,04287
Frank Copula ~ -0,072003  0,000148 12,03848 24,067 24,0639
Plackett
Copula 0,961748  0,002501 -1133,87 2267,75 2267,753

4. Conclusion

In this paper, I based on investigate the structure of dependence between X, Y, Z and T which are generated
Weilbull distribution. Thus I used Copula- GARCH approach. Primarily, I formed the marginal distribution
using GARCH (1,1) method with Gaussian distribution. From this observed results, X, Y, Z, and T series were to
close each other and had high frequency data. Also, these series have a strong long-term persistence in the
volatility. For dependency structure between X, Y, Z, and T series, copula functions are used. The Copula is
made up of six pairs that (X,Y), (Z,T), (X,2),(X,T),(Y,Z) and (Y,T).The dependence of (X,Y) is modeled Ali
Mikhail Haq copula with the parameter value of 0,1472356, Kendall Tau 0,034 and Spearman Rho 0,05, the
dependence of (Z,T) is suitable copula Clayton copula with the parameter value of 0,0682523, Kendall Tau
0,033 and Spearman Rho 0,049, the dependence of (X,Z) is best copula Frank copula with the parameter value of
-0,108012, Kendall Tau -0,012 and Spearman Rho -0,019. Likewise, for the dependence of (X,T), (Y,Z) and
(Y,T) are best copulas respectively, Frank copula with the parameter value of -0,351430, Kendall Tau -0,039 and
Spearman Rho -0,059, Ali Mikhail Haq Copula with the parameter value of 0,053274, Kendall Tau 0,012 and
Spearman Rho -0,015, Frank Copula with the parameter value of -0,072003, Kendall Tau -0,008 and Spearman
Rho -0,013.
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