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1. Introduction 

In the past years, the standard method of estimating 

dependence has been Pearson’s correlation coefficient, 

which is based on the multivariate Gaussian 

distribution. However, as Fama (1963) noted, 

financial time series do not provide the assumption of 

normality. Embrechts, McNeil, and Straumann (1999) 

proved that Pearson’s correlation coefficient is not 

sufficient to show the dependence between variables 

not belonging to the family of elliptical distributions. 

That is to say there was a need for the establishment 

of new methods to overcome the drawbacks of 

Person’s correlation coefficient. Multivariate GARCH 

models formed such a status. The aim of this model is 

modeling of the conditional covariance and 

conditional correlation matrix.  

 

 

 

 

Today, a commonly used second alternative can be 

found in the so called copulas introduced by Sklar 

(1959). The aim of this paper is to model GARCH for 

non-normal multivariate distributions using copulas. 

Copulas are defined functions that join one 

dimensional distribution functions together to form 

multivariate distribution functions by Sklar (1959). 

There were very few practical applications of copulas. 

Nelsen (1999) gave definition of copula with 

mathematic perspective.  Later applications of copulas 

were defined in finance Embrechts, P., A. McNeil and 

D. Straumann (2002).  

 

 

 

 

 

Abstract 

Objective:  Multivariate GARCH (MGARCH) models are forecasted under normality. In this study, for non-

elliptically distributed the data set which are generated Weilbull distribution. Copula-based GARCH (Copula-

GARCH) was used. The aim of the paper is to model GARCH for non-normal distributions using copulas.  

Material and Methods:  A two-step Copula-GARCH model to analyze the dependence structure of data sets 

was used. In the first step, we show data using univariate GARCH model to get standard residuals and construct 

marginal distributions. In this section GARCH (p,q) and GARCH (1,1) method are introduced. GARCH (1,1) 

method for data set was used for first step. In the second step, for dependence structures of the data sets were 

calculated Kendall Tau and Spearman Rho values which are nonparametric. Based on this method, parameters 

of copula are obtained.   

Results:  A clear advantage of the copula-based model is that it allows for maximum-likelihood estimation 

using all available data.  

Conclusion:  The aim of the method is basic to find the parameters that make the likelihood functions get its 

maximum value. With the help of the maximum-likelihood estimation method, for copula families obtain 

likelihood values. This values, Akaike information criteria (AIC) and Schwartz information criteria (SIC) are 

used to determine which copula supplies to suitability to the data set. 

Key Words:  Copula Function, GARCH method, Kendall Tau, Spearman Rho, Akaike information criteria, 

Schwartz information criteria. 
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2. Material and Methods 

2.1. GARCH Model  

GARCH model was first founded by generalizing ARCH model by Bollerslev and Eagle  (1986).The GARCH 

(p,q) includes p lags of the variances in the linear ARCH (q) conditional variance equation. The variance 

equation can be generalized 

                                                   
2 2 2

1 1
j t j

q p

t i t i

j i

w    
 

 

                                                                      (1) 

Another extension is the Generalized ARCH or GARCH model. The GARCH model adds lags of the variance, 

ht-p, to the standard ARCH. A GARCH (1, 1) method refers to the presence of a first-order autoregressive 

ARCH statement and a first-order moving average GARCH statement. For GARCH (p,q) 

 
t
   is the error terms from the mean the equation. 

t t t
Z  , here, 

t
Z is separate stochastic piece and 

also 
t
Z is residual series,

t
Z have zero mean identical and independent distribution,

t
  is a time dependent 

standard deviation. 
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  is show GARCH statements, 
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 is show ARCH statements. 

 The parameter of ARCH statements and GARCH statements submit the influence of ARCH effect (past 

innovation) and GARCH effect on the conditional variance. The rate of this effect to the coming periods 

respectively. 

In general GARCH (1,1) is enough to use for this series [3,7,18]. 

2.2. Copula Theory 

The copula is defined as a
2

:[0,1] [0,1]C   that ensures the limiting conditions 

    ,0 0, 0C u C u   and      ,1 1, ,  0,1C u C u u u    .   

 
4

1 2 1 2
( , , , ) [0,1] ,u u v v   such that 

1 2 1 2
,u u v v     

       2 2 2 1 1 2 1 1
, , , , 0.C u v C u v C u v C u v      

Ultimately, for twice differentiable and 2-increasing property can be replaced by the condition  

                                                       

2
( , )

( , ) 0
C u v

c u v
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                                                                            (2) 

where ( , )c u v  is the copula density. In the following, for 𝑛-uniform random 
1 2
, ,...,

n
U U U   variables, the joint 

distribution function C  is defined  

   1 2 1 1 2 2
, , , , ,  , .

n n n
C u u u P U u U u U u       

Here   is dependence parameter [1,2,3,4,5,8,9,10,11]. 

2.2.1. Sklar Theorem 

Let X  and Y  be random variables with continuous distribution functions
X
F   and 

Y
F  , with    

X
F X   and 

  
Y
F Y  are uniformly distributed on the interval  [0,1].

 
Then, there is a copula such that for all ,x y R , 

                                                  , ( ,
XY X Y
F X Y C F X F Y  .                                                                    (3)     

The copula C  for  ,X Y is the joint distribution function for the pair   
X
F X ,   

Y
F Y provided 

X
F  and 

Y
F  

continuous [1,2,3,4,6,9,11,12,13,14,15,16,17,20,21,22,23]. 
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2.2.2. Archimedean Copula 

 Let 𝜑 define a function :[0,1] [0, ]    which is continuous and provides: 

 (1) 0, (0) .     

 For all (0,1)t , 
'
( ) 0t   ,   is decreasing, for all (0,1)t   0t   ,   is convex. 

𝜑 has an inverse    1
: 0, 0,1 

  , which has the same properties out of 
( 1)

(0) 1 
  and

( 1)
( ) 0. 
    

The Archimedean Copula is defined by  

                                                       
( 1)

( , ) [ ( ) ( )].C u v u v  
                                                                       (4)    

[10,12,16,19].     

 

2.2.3. Gumbel Copula 

This Archimedean copula is defines with the help of generator function       t lnt


    ,   1;   

                                        1
( , ) exp [( ln ) ( ln ) ]C u v u v

  

                                                                  (5) 

where 𝛳 is the copula parameter restricted to[1, ∞). This copula is asymmetric, with more weight in the right 

tail. Beside this, it is extreme value copula [12]. 

2.2.4. Clayton Copula 

This Archimedean copula is defines with the help of generator function 
1

( )
t

t








 , 

                                                    ( , ) ( 1).C u v u v
 



 
                                                                            (6)                                                              

where   is the copula parameter restricted to (0, ).  This copula is also asymmetric, but with more weight in 

the left tail [13]. 

 

2.2.5. Frank Copula  

This Archimedean copula is defines with the help of generator function;  
1

    ln ;
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t
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where  is the copula parameter restricted to  0, [13]. 

2.2.6. Joe Copula 

This Archimedean copula is defines with the help of generator function;
 

   ln 1 1t t


     
 

 
 

                                            
1/

, 1 1 1 ( 1 1C u v u v u v


   


        
                           

(8)                                      

where   is the copula parameter restricted to  1, . This copula family is similar to the Gumbel. The right tail 

positive dependence is stronger more than Gumbel [20]. 
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2.2.7. Plackett Copula 

This copula function is defines  

                                

2
1 ( 1) [1 ( 1)( )] 4 ( 1)

( , )
2( 1)

u v uv
C u v

   



       



.                                      (9) 

Where   is the copula parameter restricted to (0, ) [20]. 

 

2.2.8 Ali Mikhail Haq Copula 

This Archimedean copula is defines with the help of generator function    ln 1 1 /t t t        

                                          
   

,
1 1 1

uv
C u v

u v





  
                                                                             (10) 

where      is the copula parameter restricted to  1,1  [18]. 

 

2.3. Measuring Dependence                      

 

2.3.1. Spearman Rho 

Similar to approach of Pearson correlation coefficient, to compute the correlation between the pairs ( , )
i i
R S  of 

ranks have been used. Thus, Spearman’s Rho 
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where     
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2
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                                                               (12) 

write. This coefficient that stated expediently in the form  

                                               
1

12 1
3

( 1)( 1) 1

n

n i i

i

n
R S
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 .                                                    (13) 

Also,
n

  is asymptotically unbiased estimator of  

                                      
2 2

[0,1] [0,1]

12 ( , ) 3 12 ( , ) 3uvdC u v C u v dudv                                          (14) 

where the second equality is obtain. This statement extended; 

                              
2 1[0,1]

12 1
12 ( , ) 3 3
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n
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i

R S n
uvdC u v
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                                   (15) 

and 
n
C C  as n .Here the null hypothesis 

0
H C    of independence of  X andY , the 

distribution of 
n

  is normal with zero mean and variance 1 ( 1)n  ,thus for 
0

H  approximate 0.05  , 

/2
1 1,96

n
n z   [12,13,14,15]. 
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2.3.2. Kendall Tau 

Another measure of dependence is Kendall Tau. This measure based on ranks given by  

                                                        
4
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                                                               (16) 

where 
n
P  and 

n
Q  number of concordant and discordant pairs respectively. Here, ( , ), ( , )

i i j j
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i j i j
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written. 
n

  is asymptotically unbiased estimator of    and 
n

  is normal with zero mean and variance 

2(2 5) {9 ( 1)}n n n  . Here the null hypothesis 
0

H C    of independence of X andY , thus for 
0

H  

approximate 0.05  , 9 ( 1) 2(2 5) 1.96
n

n n n     [12, 13, 14, 15, 22]. 

 

Table 1: Generator, Parameter space, Kendall Tau and Spearman Rho values of Special Copula Families 

Family Generator Parameter Kendall Tau Spearman Rho 
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2.4. Copula estimation  

 

2.4.1. Maximum Likelihood Method (MLE) 

 

Maximum likelihood method is the most used for copula. The aim of the method is basic to find the parameters 

that make the likelihood functions get its maximum value. It is given  

                                       1 2 1 1 2 2

1
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n n n j j
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f x x x c F x F x F x f x


                                   (18) 

1 1 2 2

1 1 2 2

1 1 2 2

( ( ), ( ),..., ( ))
( ( ), ( ),..., ( ))

( ), ( ),..., ( )

n

n n

n n

n n

c F x F x F x
c F x F x F x

F x F x F x





 . 

Let  1 2 1
, ,...,

T

t t nt t
x x x


  is the sample data matrix, the likelihood functions can be given  
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Karakas                                                                                                            http://dx.doi.org/10.20863/nsd. 302773 

 

18 

Natural Science and Discovery 2017; 3(2):13-24 

Accordingly, the maximum likelihood estimator is 

                                                                      

ˆ max ( )
MLE

l


  .                                               [12, 13, 14, 15] 

 

2.4.2. Inference for marginal (IFM) 

This method is used to overcome the drawbacks of full maximum likelihood function. The aim of copula theory 

is separate between the univariate margins and the dependence structure. From equation (19) 

               
1 1 1 2 2 2

1 1 1

( ) ln( ( ( , ), ( , ),..., ( , ), ) ln ( , )
T T n

t t n nt n j jt j

t t j

l c F x F x F x f x     
  

                (20) 

write. In this equation (19) the vector of the parameters for the univariate marginal  
1 2

( , ,..., )
n

     and 

  is vector the parameters of copula. Accordingly, the fundamental idea of inference for margins is that it is 

forecasts the parameters for marginal distributions and copula separately in two stages. 

 Estimate the parameters 
j

   from marginal distributions, 

                                               
1

ˆ arg max ln ( ; )
t

T

j j jt j

t

f x


 


                                                       (21) 

 Estimation of the vector of the copula parameters   , used the 
1 2

ˆ ˆ ˆ ˆ( , ,..., )
n

     ; 

                             
1 1 1 2 2 2
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                         (22) 

[12, 13, 14, 15]. 

2.5. Tail Dependence of Copulas 

In order to estimate the copula from bivariate observational data sets, we use the tail dependence concept. It 

relates the amount of dependence in the upper-right quadrant tail or in the lower-left-quadrant tail of a bivariate 

distribution. The upper and lower tail dependence parameters; If a bivariate copula C is such that; it is that upper 

tail dependence written, 

                                                       
1

1 2 ( , )
lim

(1 )
U

v

v C v v

v




 



                                                                (23) 

Similarly, lower tail dependence is written; 

                                                               
0

( , )
lim

L
v

C v v

v



 .                                                                      (24) 

Table 2: For copula familes upper and lower tail dependence 

Copula 

Family 
U
  

L
  

Gumbel 1
2 2


   0 

Joe 

Copula 

1
2 2


  0 

AMH 
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2
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0 0 

                                                                                                           [4,18]. 
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2.6. Copula-GARCH Estimation  

There are some approaches to model dependence. Many researchers prefer multivariate normal and t distribution 

to model in applications and GARCH model is widely used in this application. So, we prefer copula instead of 

multivariate GARCH to model dependence. The most important feature of copula is not requiring any 

assumptions of the margins normal distribution. Beside this, copula permit to separate a high dimensional joint 

distribution into its marginal distributions and copula function use to link them together. For GARCH model, 

there are many parameters which estimation more difficult. Compare to multivariate GARCH models and other 

multivariate models, copula is more suitable to model dependence structure. For the series, to model dependence 

structure, other selection criteria are Akaike’s information criterion (AIC) and Schwarz’s criterion (SIC).These; 

                                                              2log 2 /AIC L k n                                                                       (25) 

                                                               2log ln( ) /SIC L k n n   .                                                           (26)  

Here, k is the number of estimated parameter for each model, n size of sample [3,19]. 

 

3. Application  

 

3.1. Data Description 

 

In this study, I used data set (X, Y, Z, T) which generated from Weilbull distribution. I define the log-returns of 

series. Table 3 and Table 4 contain respectively descriptive statistics of X, Y, Z, T series and X, Y, Z, T return 

series. As submitted in these results, the means of X, Y, Z, T series are not nearby to zero and standard 

deviations are a little bit. The Skewness means that X, Y, Z, T series are positive. The Kurtosis of X, Y, Z, T 

series are positive. The meaning of positive skewness is that X, Y, Z, T series have the longer right tail of 

density. 

 

Table 3: Descriptive statistics of X,Y,Z,T series 

 X Y Z T 

mean 1,041126 0,939809 0,991116 1,059747 

median 0,747425 0,615185 0,670895 0,777685 

maximum 6,726771 7,982274 8,028318 5,703414 

minumum 0,000522 0,000671 0,005108 0,006594 

Std.dev. 1,064711 0,963039 1,026534 0,967569 

Skewness 2,205341 2,153105 2,438068 1,563574 

Kurtosis 9,755806 11,01666 12,41151 5,763879 

Jarque-Bera 1084,917 1380,170 1872,554 290,3015 
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Figure 1: Frequency of X, Y, Z and T series 
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Table 4: Descriptive statistics of X,Y,Z,T return series 

 X Y Z T 

mean -0,007332 -0,000379 0,002451 0,001740 

median 0,008150 -0,035048 -0,008549 -0,096574 

maximum 5,858241 7,341030 5,238800 5,813359 

minumum -6,040652 -6,934251 -5,860342 -5,833584 

Std.dev. 1,765448 1,880493 1,707246 1,592205 

Skewness 0,004231 0,155597 0,139830 0,187150 

Kurtosis 3,739595 3,666246 3,727014 3,606463 

Jarque-Bera 9,095071 8,989556 10,08736 8,443801 
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Figure 2: Returns of  X, Y, Z and T series 

 

3.2. Modeling the marginal distribution 

 

In table 3,4,5,6, for X, Y, Z and T return series are given marginal modeling. In these tables, there are 

coefficients for variance equation. In the equation (1) w is C,  is ARCH (1) and  is GARCH (1). Accordingly 

this equation, the sum of the ARCH and GARCH coefficients ( 1    ) is very close to one, indicating that 

volatility shocks for this series are quite persistent. This result is often observed in high frequency data. 

 

Table 5: X return Series Marginal Modeling 

 Gaussian Standard Error   

C 2,403845 0,382825 

ARCH (1) 0,397481 0,099624 

GARCH(1) -0,137874 0,099005 

LogL -775,4711 - 

AIC 3,907123 - 

SIC 3,947113 - 
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Table 6: Y return Series Marginal Modeling 

 Gaussian Standard Error   

C 2,414059 0,519193 

ARCH (1) -0,335428 0,104123 

GARCH(1) -0,017985 0,120611 

LogL -801,0585 - 

AIC 4,035381 - 

SIC 4,075370 - 

 

   

Table 7: Z return Series Marginal Modeling 

 Gaussian Standard Error   

C 2,200512 0,349086 

ARCH(1) 0,393349 0,104596 

GARCH(1) -0,155193 0,110172 

LogL -754,4844 - 

AIC 3,801927 - 

SIC 3,841916 - 

 

Table 8: T return Series Marginal Modeling 

 Gaussian Standard Error   

C 1,330661 0,372758 

ARCH(1) 0,339488 0,100450 

GARCH(1) 0,125565 0,180168 

LogL -724,8858 - 

AIC 3,678625 - 

SIC 3,718615 - 

 

3.3. With Copula Modeling of the Dependence Structure  

 

In this study, to model dependence, I present five copula families. I used to select Kendall’s Tau and Spearman’s 

Rho rank correlation statistics in our study, so the correlations parameters corresponding to each copula are 

obtained based on Kendall’s Tau and Spearman’s Rho. Maximum Likelihood Estimation method is used applied 

to estimation copula parameters. Accordingly, in table 11, 12, 13, 14, 15, 16 for copula families parameter values 

and Logl, AIC and SIC values is calculated. According to this values, with the help of equation, (19), (25) and 

(26), in table 11, relationship of X and Y series is positive weak relation and based on the AIC and SIC value we 

conclude that dependence structure of X and Y series is modeled by Ali Mikhail Haq copula 

( 0,14722356  ), in table 12 relationship of Z and T series is positive weak relation and based on the AIC 

and SIC value we conclude that dependence structure of Z and T series is modeled by Clayton copula 

( 0,0682523  ), in table 13, relationship of X and Z series is negative weak relation based on the AIC and 

SIC value we conclude that dependence structure of X and Z series is modeled by Frank ( 0,108012  ), 

similarly in table 14, in table 15 and in table 16 respectively, relationship of X and T series is negative weak 

relation and based on the AIC and SIC value we conclude that dependence structure of X and T series is 

modeled by Frank ( 0,351430  ), relationship of Y and Z series is positive weak relation and based on the 

AIC and SIC value we conclude that dependence structure of Y and Z series is modeled by Ali Mikhail Haq 

( 0,053274  ), relationship of Y and T series is negative weak relation and based on the AIC and SIC value 

we conclude that dependence structure of Y and T  series is modeled by Frank ( 0,072003  ). 

 

Table 9: For X, Y, Z, T series Kendall Tau ( ) rank correlation 

 X Y Z T 

X 1 0,034 -0,012 -0,039 

Y 0,034 1 0,012 -0,008 

Z -0,012 0,012 1 0,033 

T -0,039 -0,008 0,033 1 
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Table 10: For X, Y, Z, T series Spearman Rho (  ) rank correlation 

 X Y Z T 

X 1 0,05 -0,019 -0,059 

Y 0,05 1 0,015 -0,013 

Z -0,019 0,015 1 0,049 

T -0,059 -0,013 0,049 1 

 

Table 11:  X and Y series Dependence Structure Modeling 

Copula Family     Logl AIC SIC 

Joe Copula 1,061005 0,002373 -95,8729 
  

191,7558 
 

191,7588 
 

AMH Copula 0,1472356 0,0025 
  

0,208139 -0,4066278 -0,386320 

Clayton 

Copula 
0,070393 0,002246 

 

-0,24994 
 

0,50988 
 

0,51289 
 

Frank Copula 0,306286 0,002714 
 

-59,874 
 

119,758 
 

119,761 
 

Plackett 

Copula 
1,161695 0,002504 

 

-632,822 1265,654 
 

1265,657 
 

 

 

Table 12: Z and T series Dependence Structure Modeling 

 

Copula Family     Logl AIC SIC 

Joe Copula 1,059141 0,002368 
 

-102,134 
  

204,278 
 

204,281 
 

AMH Copula 0,1430673 0,002501 
  

0,226331 -0,44266 
 

-0,43965 
 

Clayton 

Copula 
0,0682523 0,002252 

  

0,625233 
 

-1,24047 
 

-1,23746 
 

Frank Copula 0,2972623 0,002545 
 

-57,9673 
 

115,9446 
 

115,9476 
 

Plackett 

Copula 
1,158477 0,004427 

 

-639,803 
 

1279,616 
 

1279,619 
 

 

 

 

 

Table 13:  X and Z series Dependence Structure Modeling 

 

Copula Family     Logl AIC SIC 

Joe Copula 0,979581 0,002351 
 

-49,1176 
  

98,2452 
 

98,24821 
 

AMH Copula -0,054732 0,002532 
  

0,030216 
 

-0,05043 
 

-0,04742 
 

Clayton 

Copula 
-0,023715 0,002224 

  

0,112861 
 

-0,21572 
 

-0,21271 
 

Frank Copula -0,108012 0,000331 
 

17,68412 
 

-35,3582 
 

-35,3552 
 

Plackett 

Copula 
0,9445883 0,0025 

 

-1005,09 
 

2010,19 
 

2010,193 
 

 

 

Table 14: X and T series Dependence Structure Modeling 

 

Copula Family     Logl AIC SIC 

Joe Copula 0,9356073 0,002369 
 

-25,5028 
  

51,0156 
 

51,01861 
 

AMH Copula -0,183338 0,002632 
  

0,292312 
 

-0,57462 
 

-0,57161 
 

Clayton 

Copula 
-0,075072 0,002382 

 

0,509709 
 

-1,00942 
 

-1,00641 
 

Frank Copula -0,351430 0,003511 
 

48,15021 
 

-96,2904 
 

-96,2874 
 

Plackett 

Copula 
0,837624 0,002504 

 

-631,274 
 

1262,558 
 

1262,561 
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Table 15: Y and Z series Dependence Structure Modeling 

 

Copula Family     Logl AIC SIC 

Joe Copula 1,020986 0,002353 
 

-73,1704 
  

146,3508 
 

146,3538 
 

AMH Copula 0,053274 0,002503 
  

0,015528 
 

-0,02106 
 

-0,01805 
 

Clayton 

Copula 
0,024291 0,002295 -0,11522 

  

0,24044 
 

0,24345 
 

Frank Copula 0,018012 0,000391 
 

-19,7092 
  

39,4284 
 

0,24345 
 

Plackett 

Copula 
1,046031 0,00251 

 

-1069,54 
 

2139,09 
 

2139,093 
 

 

Table 16: Y and T series Dependence Structure Modeling 

 

Copula Family     Logl AIC SIC 

Joe Copula 0,098325 0,002347 
  

-53,7173 
  

107,4446 
 

107,4476 
 

AMH Copula -0,036351 0,002523 
  

0,015474 
 

-0,02095 
 

-0,01794 
 

Clayton 

Copula 
0,015873 0,001967 

 

-0,01493 
  

0,03986 
 

0,04287 
 

Frank Copula -0,072003 0,000148 
 

12,03848 
 

-24,067 
 

-24,0639 
 

Plackett 

Copula 
0,961748 0,002501 

 

-1133,87 
 

2267,75 
 

2267,753 
 

 

 

4. Conclusion  

 

In this paper, I based on investigate the structure of dependence between X, Y, Z and T which are generated 

Weilbull distribution. Thus I used Copula- GARCH approach. Primarily, I formed the marginal distribution 

using GARCH (1,1) method with Gaussian distribution. From this observed results, X, Y, Z, and T series were to 

close each other and had high frequency data. Also, these series have a strong long-term persistence in the 

volatility. For dependency structure between X, Y, Z, and T series, copula functions are used. The Copula is 

made up of six pairs that (X,Y), (Z,T), (X,Z),(X,T),(Y,Z) and (Y,T).The dependence of (X,Y) is modeled Ali 

Mikhail Haq copula with the parameter value of 0,1472356, Kendall Tau 0,034 and Spearman Rho 0,05, the 

dependence of (Z,T) is suitable copula Clayton copula with the parameter value of 0,0682523, Kendall Tau 

0,033 and Spearman Rho 0,049, the dependence of (X,Z) is best copula Frank copula with the parameter value of 

-0,108012, Kendall Tau -0,012 and Spearman Rho -0,019. Likewise, for the dependence of (X,T), (Y,Z) and 

(Y,T) are best copulas respectively, Frank copula with the parameter value of -0,351430, Kendall Tau -0,039 and 

Spearman Rho -0,059, Ali Mikhail Haq Copula with the parameter value of 0,053274, Kendall Tau 0,012 and 

Spearman Rho -0,015, Frank Copula with the parameter value of -0,072003, Kendall Tau -0,008 and Spearman 

Rho -0,013. 
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